⊟Summary[edit | edit source]
- pan ID?: SAUPAN004078000
- symbol?: xseA
- synonym:
- description?: exodeoxyribonuclease VII large subunit
- exodeoxyribonuclease VII large subunit
- exodeoxyribonuclease 7 large subunit
- exodeoxyribonuclease VII, large subunit, putative
- exodeoxyribonuclease VII, large subunit
- putative exodeoxyribonuclease VII large subunit
descriptions from strain specific annotations:
- strand?: -
- coordinates?: 4359689..4361026
- synteny block?: BlockID0031100
- occurrence?: in 100% of 34 strains
xseA : exodeoxyribonuclease VII large subunit [1]
Staphylococci require degradation of single-stranded DNA for multiple cellular processes including DNA mismatch repair, homologous recombination and antiviral defenses. The XseAB system (ExoVII) is a bi-directional (3'→5' or 5'→3') exoDNase that can degrade single-stranded DNA. Typically, incorrect base pairing during replication is detected by MutS which recruits the MutL repair center protein. Unlike in E. coli which uses a separate nickase enzyme (MutH), staphylococcal MutL has a separate domain to nick the unmethylated strand at its hemimethylated GATC recognition site. DNA is unwound, typically by PcrA helicase, and, depending on the location of the nick, a 3'→5' or 5'→3' ssDNA exodeoxyribonuclease is required to depolymerize the non-methylated strand. While RecJ can perform 5'→3' processing, only ExoVII can degrade ssDNA in either orientation.
⊟Orthologs[edit | edit source]
⊟Genome Viewer[edit | edit source]
COL | |
N315 | |
NCTC8325 | |
Newman | |
USA300_FPR3757 |
⊟Alignments[edit | edit source]
- alignment of orthologues: CLUSTAL format alignment by MAFFT L-INS-i (v7.307)
COL MSDYLSVSALTKYIKYKFDQDPHLQSVLIKGELSNFKKHSSGHLYFNVKDKESVISAMMF
N315 MSDYLSVSALTKYIKYKFDQDPHLQSVLIKGELSNFKKHSSGHLYFNVKDKESVISAMMF
NCTC8325 MSDYLSVSALTKYIKYKFDQDPHLQSVLIKGELSNFKKHSSGHLYFNVKDKESVISAMMF
Newman MSDYLSVSALTKYIKYKFDQDPHLQSVLIKGELSNFKKHSSGHLYFNVKDKESVISAMMF
USA300_FPR3757 MSDYLSVSALTKYIKYKFDQDPHLQSVLIKGELSNFKKHSSGHLYFNVKDKESVISAMMF
************************************************************
COL KGSASKLNFEPKEGDEVLLEARVSVFERRGNYQIYVNKMQLDGIGNLYQKLEALKKKLTE
N315 KGSASKLNFEPKEGDEVLLEARVSVFERRGNYQIYVNKMQLDGIGNLYQKLEALKKKLTE
NCTC8325 KGSASKLNFEPKEGDEVLLEARVSVFERRGNYQIYVNKMQLDGIGNLYQKLEALKKKLTE
Newman KGSASKLNFEPKEGDEVLLEARVSVFERRGNYQIYVNKMQLDGIGNLYQKLEALKKKLTE
USA300_FPR3757 KGSASKLNFEPKEGDEVLLEARVSVFERRGNYQIYVNKMQLDGIGNLYQKLEALKKKLTE
************************************************************
COL EGCFDKANKKSIPKFPKKIAVLTASTGAAIRDIHSTINSRFPLAEQIQISTLVQGEKAKD
N315 EGCFDKANKKSIPKFPKKIAVLTASTGAAIRDIHSTINSRFPLAEQIQISTLVQGEKAKD
NCTC8325 EGCFDKANKKSIPKFPKKIAVLTASTGAAIRDIHSTINSRFPLAEQIQISTLVQGEKAKD
Newman EGCFDKANKKSIPKFPKKIAVLTASTGAAIRDIHSTINSRFPLAEQIQISTLVQGEKAKD
USA300_FPR3757 EGCFDKANKKSIPKFPKKIAVLTASTGAAIRDIHSTINSRFPLAEQIQISTLVQGEKAKD
************************************************************
COL DIIEKIEYADSLGVDTIIVGRGGGSIEDLWNFNEEAVVRAIYNCKTPIISAVGHETDFTL
N315 DIIEKIEYADSLGVDTIIVGRGGGSIEDLWNFNEEAVVRAIYNCKTPIISAVGHETDFTL
NCTC8325 DIIEKIEYADSLGVDTIIVGRGGGSIEDLWNFNEEAVVRAIYNCKTPIISAVGHETDFTL
Newman DIIEKIEYADSLGVDTIIVGRGGGSIEDLWNFNEEAVVRAIYNCKTPIISAVGHETDFTL
USA300_FPR3757 DIIEKIEYADSLGVDTIIVGRGGGSIEDLWNFNEEAVVRAIYNCKTPIISAVGHETDFTL
************************************************************
COL SDFAADIRAATPTQAAVIATPDQYELLQQIQQYQFTLTRFIKKHLEQQRKHVEHLSSYYK
N315 SDFAADIRAATPTQAAVIATPDQYELLQQIQQYQFTLTRFIKKHLEQQRKHVEHLSSYYK
NCTC8325 SDFAADIRAATPTQAAVIATPDQYELLQQIQQYQFTLTRFIKKHLEQQRKHVEHLSSYYK
Newman SDFAADIRAATPTQAAVIATPDQYELLQQIQQYQFTLTRFIKKHLEQQRKHVEHLSSYYK
USA300_FPR3757 SDFAADIRAATPTQAAVIATPDQYELLQQIQQYQFTLTRFIKKHLEQQRKHVEHLSSYYK
************************************************************
COL FKQPTLLYDQQIQRRDDLEKRLKQQIQATFEQQRHRLMLLQQRYNLKALLSSVNQEQQNN
N315 FKQPTLLYDQQIQRRDDLEKRLKQQIQATFEQQRHRLMLLQQRYNLKALLSSVNQEQQNN
NCTC8325 FKQPTLLYDQQIQRRDDLEKRLKQQIQATFEQQRHRLMLLQQRYNLKALLSSVNQEQQNN
Newman FKQPTLLYDQQIQRRDDLEKRLKQQIQATFEQQRHRLMLLQQRYNLKALLSSVNQEQQNN
USA300_FPR3757 FKQPTLLYDQQIQRRDDLEKRLKQQIQATFEQQRHRLMLLQQRYNLKALLSSVNQEQQNN
************************************************************
COL LQLTNQLVKLLNSKILSYKNDLKNKVENLNNLSPTNTMLRGYAIVNKKDEVITSTKDLTE
N315 LQLTNQLVKLLNSKILSYKNDLKNKVENLNNLSPTNTMLRGYAIVNKKDEVITSTKDLTE
NCTC8325 LQLTNQLVKLLNSKILSYKNDLKNKVENLNNLSPTNTMLRGYAIVNKKDEVITSTKDLTE
Newman LQLTNQLVKLLNSKILSYKNDLKNKVENLNNLSPTNTMLRGYAIVNKKDEVITSTKDLTE
USA300_FPR3757 LQLTNQLVKLLNSKILSYKNDLKNKVENLNNLSPTNTMLRGYAIVNKKDEVITSTKDLTE
************************************************************
COL NDQLTLTMKDGLVDAKVTKVRCNND
N315 NDQLTLTMKDGLVDAKVTKVRCNND
NCTC8325 NDQLTLTMKDGLVDAKVTKVRCNND
Newman NDQLTLTMKDGLVDAKVTKVRCNND
USA300_FPR3757 NDQLTLTMKDGLVDAKVTKVRCNND
*************************
- ↑ Katarzyna Poleszak, Katarzyna H Kaminska, Stanislaw Dunin-Horkawicz, Andrei Lupas, Krzysztof J Skowronek, Janusz M Bujnicki
Delineation of structural domains and identification of functionally important residues in DNA repair enzyme exonuclease VII.
Nucleic Acids Res: 2012, 40(16);8163-74
[PubMed:22718974] [WorldCat.org] [DOI] (I p)Susan T Lovett
The DNA Exonucleases of Escherichia coli.
EcoSal Plus: 2011, 4(2);
[PubMed:26442508] [WorldCat.org] [DOI] (P p)Liping Liu, Hanne Ingmer, Martin Vestergaard
Genome-Wide Identification of Resveratrol Intrinsic Resistance Determinants in Staphylococcus aureus.
Antibiotics (Basel): 2021, 10(1);
[PubMed:33467002] [WorldCat.org] [DOI] (P e)