⊟Summary[edit | edit source]
- pan ID?: SAUPAN003179000
- symbol?: —
- synonym:
- description?: RNA pseudouridine synthase
- RNA pseudouridine synthase
- RluA family pseudouridine synthase
- pseudouridine synthase, RluA subfamily
- ribosomal large subunit pseudouridine synthase D
- RNA pseudouridylate synthase
- Pseudouridine synthase
- putative RNA pseudouridylate synthase
- ribosomal large subunit pseudouridine synthase, RluD subfamily
- ribosomal large subunitpseudouridine synthase D-like protein
- RluD subfamily ribosomal large subunit pseudouridine synthase
- RNA pseudoridylate synthase
- RNA pseudouridylate synthase family protein
descriptions from strain specific annotations:
- strand?: +
- coordinates?: 3569357..3570212
- synteny block?: BlockID0022660
- occurrence?: in 100% of 34 strains
truC : tRNA pseudouridine(65) synthase C [1]
Transfer RNA requires extensive modification to become an efficient and selective amino acid delivery system. One of these modifications involves isomerization of uridines at position 65 to pseudouridines by TruC as Ψ provides extra rigidity and an extra opportunity for discrimination by hydrogen bonding.
TruC is a member of the RluA-like family of pseudouridine synthases (ΨS). There are four potential RluA-like ΨS enzymes known (RluA, RluC, RluD and TruC), of which staphylococci contain only three homologues: SAUPAN003179000, SAUPAN003477000, and SAUPAN004783000. All members contain the same XXHRLD consensus active site sequence and act on different RNA substrates to convert uridines into pseudouridines. SAUPAN003477000 can be unambiguously assigned as "rluD" due to its N-terminal, C-terminal and active site homology to E. coli RluD. The remaining staphylococcal RluA-like ΨS enzymes contain an N-terminal S4-like domain that is absent in E. coli RluA. After removing the S4-like domain, SAUPAN004783000 can be unambiguously assigned as "rluA" due to its truncated N-terminal, C-terminal and active site homology to E. coli RluA. Likewise, N-truncated SAUPAN003179000 aligns most closely with E. coli TruC. Furthermore, we note that the mutations described in the referenced article conferring tetracycline resistance typically occur via modifications to transfer RNA-modifying enzymes (i.e. miaA, truA), not to 23S rRNA-modifying enzymes, further supporting a functional assignment as truC. Based on the precedent that firmicutes contain only five Ψ residues in 23S rRNA, it is highly likely that staphylococci lack RluC enzymatic activity consistent with the functional assignments above.
⊟Orthologs[edit | edit source]
⊟Genome Viewer[edit | edit source]
COL | |
N315 | |
NCTC8325 | |
Newman | |
USA300_FPR3757 |
⊟Alignments[edit | edit source]
- alignment of orthologues: CLUSTAL format alignment by MAFFT L-INS-i (v7.307)
COL MKFKYHISQQETVKTFLARHDFSKKTVSAIKNNGALIVNDEPVTVRKQLMTNDILEIHLP
N315 MKFKYHISQQETVKAFLARHDFSKKTVSAIKNNGALIVNDEPVTVRKQLMPNDILEIHLP
NCTC8325 MKFKYHISQQETVKTFLARHDFSKKTVSAIKNNGALIVNDEPVTVRKQLMTNDILEIHLP
Newman MKFKYHISQQETVKTFLARHDFSKKTVSAIKNNGALIVNDEPVTVRKQLMTNDILEIHLP
USA300_FPR3757 MKFKYHISQQETVKTFLARHDFSKKTVSAIKNNGALIVNDEPVTVRKQLMTNDILEIHLP
**************:***********************************.*********
COL REIPSVNLIPYARKLEVLYEDAFIIIVTKPNNQNCTPSREHPHESLIEQVLYHCQEHGEN
N315 REIPSVNLIPYARKLEVLYEDAFIIIVTKPNNQNCTPSREHPHESLIEQVLYHCQEHGEN
NCTC8325 REIPSVNLIPYARKLEVLYEDAFIIIVTKPNNQNCTPSREHPHESLIEQVLYHCQEHGEN
Newman REIPSVNLIPYARKLEVLYEDAFIIIVTKPNNQNCTPSREHPHESLIEQVLYHCQEHGEN
USA300_FPR3757 REIPSVNLIPYARKLEVLYEDAFIIIVTKPNNQNCTPSREHPHESLIEQVLYHCQEHGEN
************************************************************
COL INPHIVTRLDRNTTGIVIFAKYGHIHHLFSKVNLKKIYTCLVYGKTHTSGIIEANIRRSK
N315 INPHIVTRLDRNTTGIVIFAKYGHIHHLFSKVNLKKIYTCLVYGKTHTSGIIEANIRRSK
NCTC8325 INPHIVTRLDRNTTGIVIFAKYGHIHHLFSKVNLKKIYTCLVYGKTHTSGIIEANIRRSK
Newman INPHIVTRLDRNTTGIVIFAKYGHIHHLFSKVNLKKIYTCLVYGKTHTSGIIEANIRRSK
USA300_FPR3757 INPHIVTRLDRNTTGIVIFAKYGHIHHLFSKVNLKKIYTCLVYGKTHTSGIIEANIRRSK
************************************************************
COL DRIITREVASDGKYAKTSYEVINQNDKYSLCKVHLHTGRTHQIRVHFQHIGHPIVGDSLY
N315 DSIITREVASDGKYAKTSYEVINQNDKYSLCKVHLHTGRTHQIRVHFQHIGHPIVGDSLY
NCTC8325 DRIITREVASDGKYAKTSYEVINQNDKYSLCKVHLHTGRTHQIRVHFQHIGHPIVGDSLY
Newman DRIITREVASDGKYAKTSYEVINQNDKYSLCKVHLHTGRTHQIRVHFQHIGHPIVGDSLY
USA300_FPR3757 DRIITREVASDGKYAKTSYEVINQNDKYSLCKVHLHTGRTHQIRVHFQHIGHPIVGDSLY
* **********************************************************
COL DGFHDKIHGQVLQCTQIYFVHPINKNNIYITIDYKQLLKLFNQL
N315 DGFHDKIHGQVLQCTQIYFVHPINKNNIYITIDYKQLLKLFNQL
NCTC8325 DGFHDKIHGQVLQCTQIYFVHPINKNNIYITIDYKQLLKLFNQL
Newman DGFHDKIHGQVLQCTQIYFVHPINKNNIYITIDYKQLLKLFNQL
USA300_FPR3757 DGFHDKIHGQVLQCTQIYFVHPINKNNIYITIDYKQLLKLFNQL
********************************************
- ↑ Tomoko Hamma, Adrian R Ferré-D'Amaré
Pseudouridine synthases.
Chem Biol: 2006, 13(11);1125-35
[PubMed:17113994] [WorldCat.org] [DOI] (P p)Laura Antoine, Philippe Wolff, Eric Westhof, Pascale Romby, Stefano Marzi
Mapping post-transcriptional modifications in Staphylococcus aureus tRNAs by nanoLC/MSMS.
Biochimie: 2019, 164;60-69
[PubMed:31295507] [WorldCat.org] [DOI] (I p)Rebecca C Hull, Rosanna C T Wright, Jon R Sayers, Joshua A F Sutton, Julia Rzaska, Simon J Foster, Michael A Brockhurst, Alison M Condliffe
Antibiotics Limit Adaptation of Drug-Resistant Staphylococcus aureus to Hypoxia.
Antimicrob Agents Chemother: 2022, 66(12);e0092622
[PubMed:36409116] [WorldCat.org] [DOI] (I p)